How leaky windows and doors negatively impact a home's energy efficiency.

Presented by Paul Lohan

How is window & door Air Infiltration measured?

- Australian Standards tested in NATA-accredited laboratories
- Products that pass the Australian Standard also meet:
 - Building Code of Australia (BCA) and National Construction Code (NCC)
- Australian Standard AS2047 Window and External Glazed Doors in Buildings
 - AS 4420.2 Deflection Test
 - AS 4420.3 Operating Force Test
 - AS 4420.4 Air Infiltration Test
 - AS 4420.5 Water Penetration Resistance Test
 - AS 4420.6 Ultimate Strength Test
- Measures Air Infiltration under positive and negative pressure at 75 Pa and 150 Pa
- The result is expressed at each pressure in litres per second per square metre

Rylock AS2047 Laboratory Testing

How is window & door Air Infiltration reported?

AS 4420.4 Air Infiltration Test

- Window Energy Rating Scheme (WERS) publishes Air Infiltration at 75 Pa pressure for a non-conditioned building (such as a house that has openable windows for ventilation)
- Represents a wind speed of ~ 11m/s or roughly 40km/hr.

What factors determine a product's Air Infiltration?

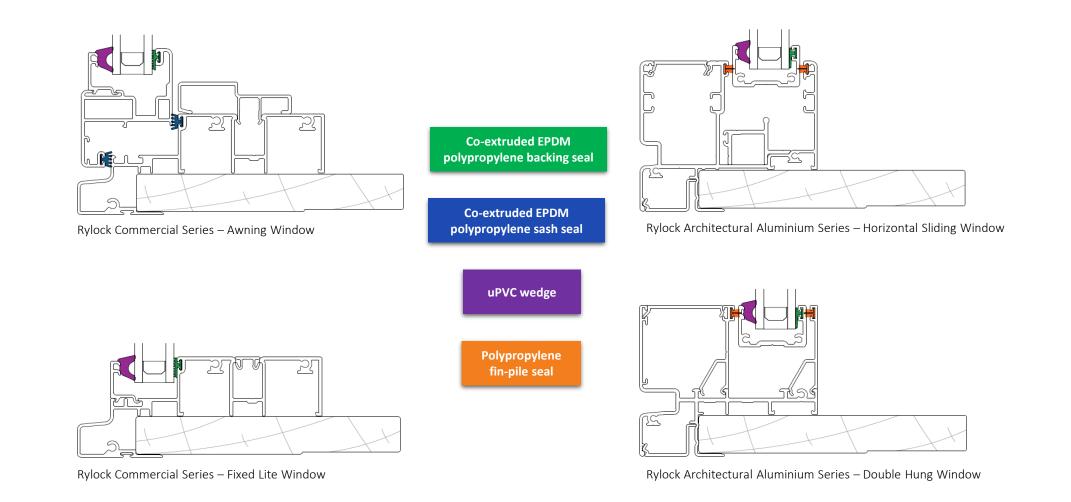
• Product Type

- Hinged windows with a compression seal typically perform better than sliding windows with a wipe seal
- Hardware
 - Primary operator
 - Additional hardware (e.g. secondary latching)
- Quantity of Seals
 - Single perimeter vs. dual perimeter
- Compression vs. Wipe Seal
 - Compression seals typically perform best. A tightly compressed wipe seal increases friction and reduces sliding action

Rylock Commercial Series – Awning Window Latches

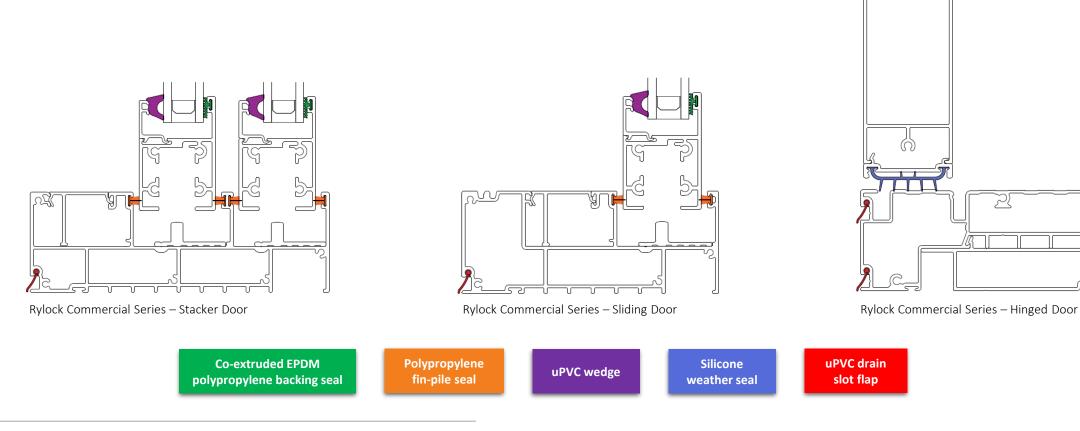
What factors determine a product's Air Infiltration?

- Seal Material Type
 - The quality of the seal is heavily dependent on the material type
 - Durability and "memory" (ability to regain shape after distortion)
 - uPVC, EPDM (e.g. Santoprene), Polypropylene, Nylon and Silicone
- Seal Design
 - Width, thickness, hardness/suppleness, co-extruded and multiple contact points
- Product Size
 - Larger products will have an *actual* Air Infiltration result greater than the product tested at a nominal size for AS2047
 - Air Infiltration is measured in L/s/m² so if a window or door sash is twice the size, it's reasonable to infer that the Air Infiltration result will be twice as much



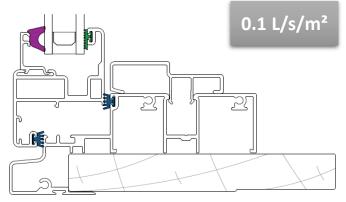
Rylock Commercial Series – Hinged Door Panel Stile Fin Pile Seal

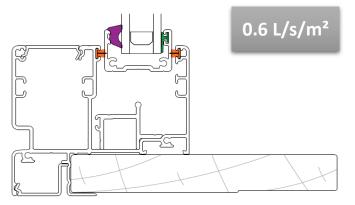
How are these seals integrated into product profiles?

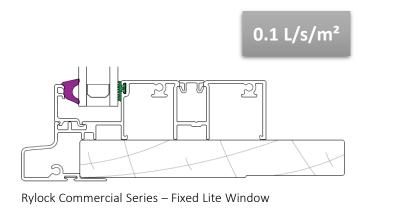


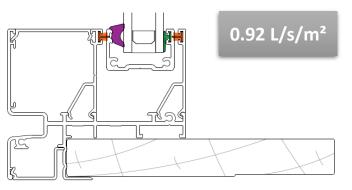
<u>~</u>____

How are these seals integrated into product profiles?



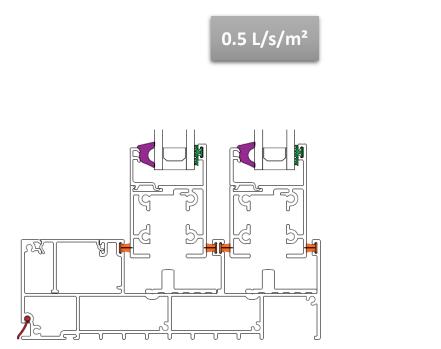

How leaky windows and doors negatively impact a home's energy efficiency.


Seal effectiveness on various Rylock products (per AS2047 4420.4)

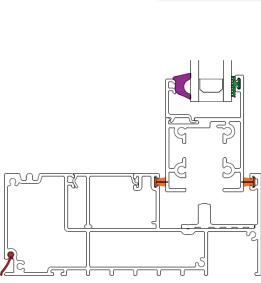


Rylock Commercial Series – Awning Window

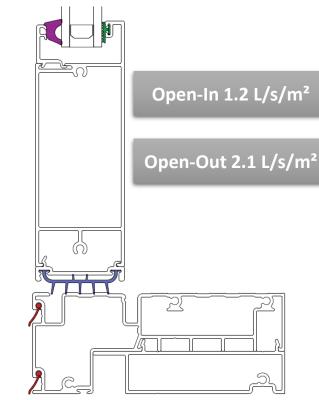
Rylock Architectural Aluminium Series – Horizontal Sliding Window



Rylock Architectural Aluminium Series – Double Hung Window



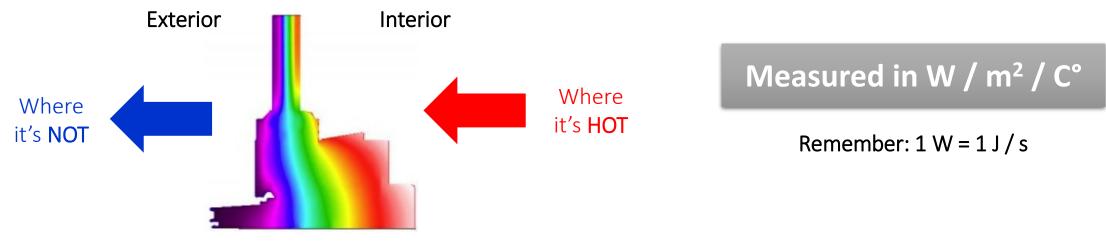
Seal effectiveness on various Rylock products (per AS2047 4420.4)



Rylock Commercial Series – Stacker Door

0.5 L/s/m²

Rylock Commercial Series – Sliding Door


Rylock Commercial Series – Hinged Door

How does the Air Infiltration affect the energy efficiency performance of a window or door?

- Two important parameters of window and door energy efficiency are:
 - SHGC: heat gained in a building from direct solar radiation
 - U-value: the measure of heat transfer used to calculate the heat loss of a house.
 - When there's a difference in temperature between two side of a building element (eg: a window or door), heat exchange takes place

Air Infiltration to U-Value Calculation/Comparison

Competitor Sliding Door Product

$Q = W/m^2$	Note: For Ti - Te = 1 then Q = 'U'							
$q = m^3/s/m^2$	Air Leakage (Note: quoted @ 75 Pa)							
p = kg/m ³	Density of Air (Science Data Book, Oliver & Boyd, 1971)							
C _p = J/kg/K	Specific Heat Capacity of Air @ STP (Science Data Book, Oliver & Boyd, 1971)							
Ti = K		emperati						
Te = K	External	Tempera	ture					
Wind Speed (m/s)		5.5	1					
Window Height (m)		1.0						
Window Width (m)		1.0						
Air Leakage @ 75 Pa (L	/s/m²)	4.3						
	,							
Q = ('U' for (Ti-Te) of 1)	q	р	Cp	(Ti - Te)	Pressu	re Factor	Wir	ndow Area (m²)
1.336	0.0043	1.293	993	1	0.242		1	
WERS 'U' Value	3							
Air Infiltration 'U' Value	1.3							
Net Total 'U' Value	4.3							
	VER	S 'I I'	Vəlu	•		3		
WERS 'U' Value						<u>v</u>		
Air Infiltration 'U' Value						1.3		
Net Total 'U' Value					4.3			

Rylock Commercial Series Sliding Door


$Q = W/m^2$	Note: Fo	r Ti - Te =	= 1 then Q	= 'U'					
$q = m^3/s/m^2$	Air Leakage (Note: quoted @ 75 Pa)								
$p = kg/m^3$	Density of Air (Science Data Book, Oliver & Boyd, 1971)								
$C_p = J/kg/K$	Specific Heat Capacity of Air @ STP (Science Data Book, Oliver & Boyd, 1971)								
Ti = K	Internal Temperature								
Te = K		Tempera							
			_						
Wind Speed (m/s)		5.5							
Window Height (m)		1.0							
Window Width (m)		1.0							
Air Leakage @ 75 Pa (L	/s/m²)	0.5							
		•	-						
Q = ('U' for (Ti-Te) of 1)	q	р	Cp	(Ti - Te)	Press	ure Factor	Win	dow Area (m²)	
0.155	0.0005	1.293	993	1		0.242		1	
WERS 'U' Value	3								
Air Infiltration 'U' Value	0.2								
Net Total 'U' Value	3.2								
V	VERS	3							
A	Air Infiltration 'U' Value							_	
	Net Total 'U' Value					3.2			

Key Takeaways

- Rylock products are tested to exceed AS2047 Window and External Glazed Doors in Buildings and the NCC / BCA
- Window and door Air Infiltration performance is dependent on various factors: Product type, Hardware, Quantity of Seals, Seal Material, Seal Design, Product Size



Key Takeaways

- Good seals resulting in low air leakage are crucial to a product's overall energy efficiency
- Air Infiltration is highly indicative of how well a product performs for water leakage and noise attenuation

Case Study Examples

Post-construction blower door test = 1.1 ACH

Builder: Riccon Development + Construction

How leaky windows and doors negatively impact a home's energy efficiency.